
'I ' T h
*

NASA Contractor Report 178369

ICASE REPORT NO. 87-59

ICASE
ANALYSTS AND SYNTHESIS OF ABSTRACT DATA
TYPES THROUGH GENERALIZATION FROM EXAMPLES

~ ~ ~~ 7.- ~ ~ ~

(NASA-CR-178369) ANALYSIS AND SYNTHESIS OF M 88- 105 19
ABSTRACT DATA TYPES THROUGH G E b l E R A L I Z A T I O N
FROX EXAMPLES F i n a l Report [NASA) 25 p
Avail: BTIS AC AO3/HF A01 CSCL 098 Unclas

G3/6 1 01 03 5 35

Christian Wild

Contract No. NAS1-18107
September 1987

INSTITUTE FOR C-UTER APPLICATIONS IN SCIENCE MID ENGINEERING
NASA Langley Research Center, Hampton, Vlrginla 23665

Operated by the Universities Space Research Association

.

Analysis and Synthesis of Abstract Data Types through
Generalization from Examples t

Christian Wild

Department of Computer Science
Old Dominion University
Norfolk, VA 23508-8508

and
Institute for Computer Applications in Science and Engineering

NASA Langley Research Center, Hampton, VA 23665

ABSTRACT

The discovery of general patterns of behavior from a set of
input/output examples can be a useful technique in the automated analysis
and synthesis of software systems. These generalized descriptions of the
behavior form a set of assertions which can be used for validation, pro-
gram synthesis, program testing and run-time monitoring. Describing the
behavior is characterized as a learning process in which the set of inputs is
mapped into an appropriate transform space such that general patterns can
be easily characterized. The learning algorithm must choose a transform
function and define a subset of the transform space which is related to
equivalence classes of behavior in the original domain. An algorithm for
analyzing the behavior of abstract data types is presented and several
examples are given. The use of the analysis for purposes of program syn-
thesis is also discussed.

t Research supported in part by NASA Langley Research Center under grant NAGl-439 and in palt by NASA under con-
tract NAS1-18107 while the author was in residence at ICASE, NASA Langley Research Center. Hampton, VA 23665.

i

Analysis and Synthesis of Abstract Data Types through

Generalization from Examples t

Christian Wild

Department of Computer Science

Old Dominion University

Norfolk, VA 23508-8508

and

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center, Hampton, VA 23665

.

1. Introduction

The development of reliable and cost effective software systems is one of the big-

gest challenges facing the computer science community today. Many people feel that

current practice, which is highly labor intensive, is inadequate to the task and that new

approaches to software development utilizing increased automation will be required. 1*2 It

is our feeling that machine learning can play a significant role in automated analysis and

synthesis of software. The research described in this paper is motivated by the belief that

people use examples of behavior to analyze and understand complex systems. The

approach to learning from examples described in this paper is part of an overall project to

increase the reliability of software systems through automation (section 2).

Generalization from a set of examples is viewed as a transformation problem in

which one attempts to find an appropriate transformation from the space of input data

- 2 -

objects into the transform space such that subsets in the transform space characterize

general patterns of behavior (section 3). One algorithm for finding an appropriate

transform function and classifying the transform space is also described (section 4).

Some results applied to the data type queue are given in section 5. Section 6 discusses

some unresolved issues and gives the relation of this work to other work in this area.

2. Generation of the Input/Output Examples

The learning algorithm described in this paper is an integral part of a system to

analyze the behavior of abstract data types. Figure 1 shows the major subsystems

involved in this system. The specification of an abstract data type is given algebraically?

Input/Output examples are generated by symbolically executing the specifications. The

symbolic execution is based on deductive theorem proving techniques4 The set of exam-

ples is generalized using machine learning techniques described in this paper. These

generalizations are proved consistent with the specifications by considering the generali-

zations to be theorems and the specifications to be a set of axioms. These theorems typi-

cally require inductive proofs. Thus, the machine learning subsystem can be considered

as a means of guiding the selection of theorems which may be useful in analyzing the

behavior of the abstract data types.

The benefits of these theorems are: feedback to the systems analyst for validating

the specification, generation of test cases,5 generation of assertions for run-time monitor-

ing: guidance in program synthesis (see section 6)

Each abstract data type is analyzed individually and is referred to as the Type Of

Interest (TOI) during its analysis. We assume that the syntax of the TO1 is known

before analysis. The queue data type, whose specification is given in Figure 2, will be

- 3 -

Examples of
Behavior

.

Formal
Executable

Specification

Behavior LrJ
Prover

Behavior

Figure 1 - Major Subsystems for Automated Ana.,sis

used for purposes of illustration.

The set of functions defining a data type is divided into two subsets. The generator

functions are those functions of the specification which return a data object of the TO1

(New4, Addq, Delete4 in Figure 2). The remaining functions will be called the behavior

functions because of the important role they play in defining the behavior of the data

type3 (Isemptyq and Front4 in Figure 2). When constructing input examples, the TO1

data objects and non-TO1 data objects are generated differently. Each TO1 data object is

- 4 -

Type Queue(1n teger)

SYNTAX

Newq -> Queue
Addq(Queue,Integer) -> Queue
Deleteq (Queue) -> Queue
Frontq(Queue)
Isemptyq(Queue) -> Boolean

-> Integer u (error}

SEMANTICS
For all q : Queue; i : integer Let

1) Isemptyq(Newq) = True
2) Isemptyq(Addq(q,i)) = False
3) Deleteq(Newq) = Newq
4) Deleteq(Addq(q,i)) = If Isemptyq(q) then Newq

5) Frontq(Newq) = error
6) Frontq(Addq(q,i)) = If Isemptyq(q) then i

else Addq(Deleteq(q),i)

else Frontq(q)

End Queue
Figure 2 - Specification of Queues

described in terms of the sequence of generator functions which created that object.

Each non-TO1 data object is represented by a variable which results from a symbolic exe-

cution of the specification. These variables are subscripted, with the subscript denoting

the order in which the data object was introduced.

Figure 3 shows six data objects of type queue. This representation is chosen for the

input for two reasons. First, each application of a function is an observable event which

constitutes a point at which black box testing, run-time monitoring or record keeping can

occur. Second, the string representing this sequence of function applications is a

- 5 -

Var 11,12: integer

1) Newq
2) Addq(Newq,Il)
3) Addq(Addq(Newq,Il),I2)
4) Deleteq(Addq(Addq(Newq,I1),12))
5) Addq(Newq,M
6) Deleteq(Addq(Newq,Il))

Figure 3 - Representative Queue Data Objects

complete abstract representation of the data object. This representation is complete in

the sense that it can be used to compute the output value of the behavior functions. This

takes advantage of the fact that algebraic specifications are executable.6

The smallest subset of the generator functions which can generate every data object

of the TO1 is called the constructor function subset. A data object is in canonical form

when it is expressed as a sequence of constructor functions only. For the queue data

type, Addq and Newq are the constructors. In figure 3, example 5 is the canonical form

of example 4. A data object and its canonical form are required by the specification to

behave identically. The availability of the canonical forms of the input data objects

greatly simplifies the learning p ro~ess .~

The behavior of a data type is determined solely by the value returned by the

behavior function^.^ Thus, the output value returned by a behavior function will be

referred to as the behavior of the input data object (under the behavior function).

-~

- 6 -

3. The Transformation Problem

Each behavior function of the data type under analysis is considered individually.

To simplify this discussion, the behavior function will contain only one input argument

of the TOI. Let B represent a behavior function. Let T be the set of all data objects of

the TO1 and let T’ be the subset used as input in the examples (see figure 4). Let P be the

image of T under B. Choose y E P such that B(x) = y for some x E T’. Let S be the

inverse image of y under B; that is, S = (u I B(u) = y) and let S’ be the subset of S which

is in T. The set S defines an equivalence class of all data objects of TO1 which behave

identically under B . The goal of the generalization process is to define a characteristic

function for S.

-7-

,

Define a transform function, A, on T which can be used to derive a characteristic

function for S . Let Q be the transform space (Le., image of T under A). Let R’ = {u I

A(v) = u , where v E S’}. Thus R’ represents the set of values in the transform space

which are in the image of examples which have the same behavior (under B). Let D’ be

the inverse image of R’; that is, D’ = (u I A(u) E R’). Then, the predicate, A(u) E R’,

can be used as a characteristic function (call it C) for D’.

Consider the ways in which D’ is related to S . If D’ = S then

FOR-ALL X (X E T => (A(X) E R’ iff B(X) = y))

is the proposed assertion about the behavior of the data type. In this case, C is a neces-

sary and sufficient condition to explain behavior y . If D’ c S then C is only a sufficient

condition for B(X) = y. If D’ 2 S then C is only a necessary condition for B(X) = yt.

Such weakened conditions can be useful in testing and monitoring.* If none of the above

relationships hold, then the transform function, A, is not useful in characterizing behavior

Y .

The above approach may be generalized in two ways. The first generalization

involves the image set in the transform space (R’). In some cases D’ c S because R’ has

been generated from S’ c S ; but, in many cases, a natural extension of R’ (call it R) will

have as its inverse image a set D which is equal to S . For example, if the range of A is

the set of natural numbers and R’ = { 1..M) where M is the maximum value of the set (u I

A(v) = u , where v E T’), then R’ can be generalized to [l..-}. The characteristic func-

tion, A(u) E R, for D should produce a more general description of the behavior of the

data type.

t c and 3 denote proper subset and proper superset respectively.

- 8 -

The second generalization attempts to handle behavior functions with an infinite

image space, P. In this case, it is the characteristic function which is generalized. An

example will be shown in section 5.

Given a particular behavior function, B, and a particular behavior value, y, the gen-

eralization process involves the following tasks:

Find a transform function, A. These functions are derived by examining properties

of the observable events (sequence of generator function applications) of input TO1

data object. Adaptations of the trace functions defined by Tony Hoare in this book

Communicating ~equenrial ~rocesses9 is one source of transform functions.

Generate set R’ in the transform space, generalizing to R if appropriate. Define a

characteristic function for D’ from R’.

Determine the relationship between the subsets D’ and S. Since neither D’ nor S is

known, the relationship is determined using D” = D’ n T’ in place of D’ and S’ in

place of S.

4. The Algorithm

This section describes one of several algorithms which were investigated. This

algorithm starts with a pre-defined set of potentially useful transformation functions

which essentially count the number of events (of various kinds) in the TO1 input objects.

It examines one example and at most one counterexample at a time as it attempts to con-

verge on a characteristic function which is both necessary and sufficient over the sample

set (Le. such that D’ = S). It fails when it exhausts the pre-defined set of transform func-

tions. Attempts are made to discover a necessary and sufficient characteristic function

- 9 -

for every distinct output value. The algorithm then attempts to generalize each set R’.

.
Let ALL-TRANSFORMS be the pre-defined set of transform functions,

CURRENT-SET be a current set of transform functions, A be a transform function, C

and C’ be characteristic functions, B be a behavior function, E be an input value of the

TO1 and y be its corresponding output value. Let E’ be a counterexample input value of

TO1 and let x be a variable ranging over the set of input values of the TOI.

F9r every distinct output value, y, in the sample set:
Choose E such that B(E) = y.
Set CURRENT-SET to ALL-TRANSFORMS.

Set C to Find-a-Sufficient-Characteristic-Function for E.

REPEAT UNTIL done
IF there-exists a counterexample (E’) in the sample set such that B(E’) = y but
C(E’) is false.

Set C’ to Find-a-Sufficient-Characteristic-Function for E’.
IF C’ is true for E then set C to C’
ELSE set C to C OR C’.

ELSE done

Where Find-a-Sufficient-Characteristic-Function for x is
REPEAT UNTIL return

Choose A from CURRENT-SET.
Set R’ to the singleton set consisting of A(x).

IF there does not exist a counterexample (E’) in the sample set such that A(E’) E

R’ is true, but B(E’) f y
THEN return A(x) E R’.

Remove from CURRENT-SET all transform functions such that A(E) = A(E’).
IF CURRENT-SET is empty, then return failure.

8 -
5 Results

In this section results of applying the generalization algorithm to the queue data

type will be presented. A set of transform functions will be chosen somewhat arbitrarily

- 10-

at this point but section 6 discusses this choice in a little more detail. Let #D (#A) be the

number of times that Deleteq (Addq) appears in the input. Let #A’ be #A for the canoni-

cal form of the input. Let ALL-TRANSFORMS = (#D,#A,#A’), B = Isemptyq, y =

True. Let the set of input examples be those in figure 3. The corresponding output

values are all False except for example 1 and 6. Let E be example 1 and A be #D, then

R’ = (0) and C 3 #D(x) E (0) . C is not sufficient because of the counterexample E’ =

example 2. Based on this counterexample, CURRENT-SET = (#A,#A’). Now chose A

to be #A, then R’ = { 0) and C I #A(x) E { 01. This is a sufficient characterization of the

behavior True. However, it is not necessary. Example 6 is a counterexample. A

sufficient characterization which explains example 6 is C’ = #A’(x) E (0). This is also

necessary and can replace C. Thus the algorithm converges on the following assertions:

if #A(x) E (0) then B(x) = True
#A’(x) E (0) iff B(x) = True (assertion 2)

(assertion 1)

The first assertion is only sufficient while the second is both necessary and sufficient.

The analysis of Isemptyq is unfinished since we have not characterized the behavior

value False. Choosing E = example 2 and A = #A’ leads to the sufficient characterization

C E #A’ E { 1). However this is not necessary as indicated by counterexample, example

3. Example 3 has a sufficient characterization C‘ E #A’(x) E (2) which is also not neces-

sary. Combining C and C’ (by ORing the conditions) yields the characterization #A’(x)

E { 1..2)$. Since 2 is the maximum value returned by any of the examples for transform

function #A’, R’ = (1..2) can be generalized to (1..-). The following is characteristic

function for the subset S (which are all the queues which are not empty):

.

L

$ Union is the OR operator for sets and intersection is the AND operator

- 11 -

#A’(x) E (1 ..-) (assertion 3)

Learning the Behuvior of Frontq. Generalizing the behavior of Frontq is compli-

cated because there are a potentially infinite number of integers (and hence behaviors)

returned by this function. In this case, the system must learn a characteristic function

schema to describe the behavior. First define a new transformation function as follows:

#D’(x) = number of Deleteq function application whose
input argument had #A‘ > 0

That is, #D’ only counts the number of Deleteqs which actually deleted something from

the queue. Let I1 be the first integer added to the queue after it was created, I2 be the

second, I,, be the n-th integer added. The algorithm generates:

#D’(x) = 0 iff Frontq(x) = I1
#D’(x) = 1 iff Frontq(x) = I2

(assertion 4)
(assertion 5)

This can be generalized to

#D’(x) = n-1 iff Frontq(x) = I,, (assertion 6)

Multi-dimensional transform spaces. The analysis of Frontq can be used to illus-

trate specialization in multi-dimensioned transform spaces. This would be necessary if,

for instance, #D’ was riot in the repertoire of transform functions. First, however, we

need to extend the set of transform functions defined previously. Event counting func-

tions can be applied to subsequences of the input, where the subsequences are generated

by dividing the input around some key event. For instance, the value returned by Frontq

is traceable to a particular Addq event (the key event) during which the returned value

was originally inserted. Identifying a key event allows the analysis of the data object

both before and after that event. For the queue data type, the key event can be uniquely

- 12 -

identified by the variable inserted during the key event. Transform functions which are

applied to the Subsequence of the input which occurred before the key event are denoted

by a subscript of pre/In, where In is the item added at the key event. For the subsequence

which occurred after the key event, the subscript post& is used. To illustrate on example

In order to illustrate learning using multi-dimensional transform spaces, consider

the analysis of the those input queues which return the value I2 under the behavior func-

Frontq, y = 12. All single dimensional transform spaces using this set of transform func-

tions fail to generate a necessary and sufficient characteristic function. Therefore, it is

necessary to explore multi-dimensional transform spaces. These multi-dimensional

spaces are formed by conjoining two or more characteristic functions. In terms of set

operations, this is equivalent to checking membership in a set of n-tuples of the relevant

transform functions and the corresponding transform values as shown below. Depending

on the order in which the transform functions from the set ALL-TRANSFORMS are

paired together to form a two dimensional transform space, the following three sufficient

characteristic functions can be generated§:

Assertion 7) Frontq(Q) = 12 if (#A’,#APstfi2) E {(1,0),(2,1),(3,2),... I
Assertion 8) Frontq(Q) = 12 if (#D,s~2,#AJprefi2) E I(O,O>,(l,l>I
Assertion 9) Frontq(Q) = I2 if (#A,#A’) E ((2,1),(3,2),(4,3),...}

There are many simplifications and generalizations which are possible. For

instance, the following simplifications are possible*:

5 These are generated from a larger set of examples han those shown in figure 3.
* These simplifications and generalizations are not currently programmed into the system but are
based on straightforward arithmetic and algebraic knowledge.

- 13-

Assertion 7’) Frontq(Q) = I2 iff (#A’ - #Apsaz = 1)
Assertion 8’) Frontq(Q) = I2 iff (#Dpsaz - #AlpEhZ = 0)
Assertion 9’) Frontq(Q) = I2 iff (#A - #A’ = 1)

By examining further behavior results (for 13,14, etc.) and by further generalizations, the

following hypothesis could be produced:

Assertion 7”) Frontq(Q) = 1, iff (#A’ - #Apsan = 1)
Assertion 8”) Frontq(Q) = I, iff (#Dpsan - #AlpTehn = 0)
Assertion 9”) Frontq(Q) = I, iff (#A - #A’ = n-1)

Hypothesis H10” is another way of saying that the integer I, is at the front of the queue if

exactly every item previously in front of it has been deleted so that there is precisely one

more item in the queue than was added after I,. That one more item is I,. Hypothesis

H11” states that all the items in the queue when I, was added have subsequently been

deleted. Hypothesis H12” states that if n-1 items have been deleted from the queue, then

I, must be at the front. These different assertions are represented pictorially in figure 5.

6. Discussion

Generating Transform Functions. The success of the learning process depends on

several factors, the most critical of which is the choice of useful transform functions. A

good transform function will key in on essential features of the input while ignoring the

irrelevant details. Many of the transform functions are derived rather naturally from the

input, such as counting the number of occurrences of certain kinds of events. This class

of transform functions ignores the non-TO1 arguments in the input as well as the order of

function invocation. Identifying a key event allows the analysis of those subsequences of

events before and after the key event.

- 14-

t BACK FRONT +

#D’

Assertion 6

Assertion 1”

Assertion 8“

I c - - - - - - - - 1
t I

I In i I
I I

I In I
n - 1

I I
I I

I I

#A

#A’

Assertion 9”

dashed box - items deleted from the queue
dotted box - items deleted after In was inserted.

Figure 5 - Conditions Under Which In is at Front of Queue

- 15-

Another class of transform functions are those which are concerned with the order

in which events occur. For example, what was the last event, or the last key event con-

taining a particular generator function? As another example, the transform function

could return the sequence of generator function applications, ignoring the non-TO1 argu-

ments. This class of functions would be useful in analyzing multi-dimensional data

structures such as trees and graphs. As might be expected, generalization in this

transform space would be more difficult.

New transform functions can be formed from existing ones by conjunction. Such a

combination forms a higher dimensional transform space which is more specialized than

the original transform spaces. In the algorithm implemented, these higher order

transform spaces are explored only after all the lower order transform spaces have been

eliminated.

Generalizing in the Transform Space. The kind of generalizations possible in the

transform space depends upon the nature of the transform space itself; however, many of

the generalization rules defined in the literature10* l 1 can be applied. As described previ-

ously in the case of lsemptyq, generalization by internal disjunction12 can combine

several sufficient conditions into a necessary and sufficient one. Disjunction is

sufficiency preserving?. For generalizing in multi-dimensional transform space, tech-

niques for discovering invariant relationships in a set of quantitative data, such as avail-

able in BACON13 may be useful.

t Because ((A => B) & (C => B)) => ((A or C) => B)

- 16-

Comparison to other Learning Techniques. Learning can be viewed as the forma-

tion of general concepts through the examination of specific examples which illustrate

that concept. For program analysis, the concepts to be learned are the behavioral rela-

tionships between the input and output values (under some behavior function). Cohen

and Sarnmut14 point out that concepts are normally thought of as recognition devices,

whereas programs are considered generators of output from given input. However asso-

ciated with every program is its specification which is a predicate which recognizes

whether the output is within the concept illustrated by that program$. Thus programs are

devices for filling in the blanks (the output values) which satisfy the concept. For pro-

gram synthesis, concept recognition must be both necessary and sufficient (as in Cohen

and Sammut). Kodratoff and Ganascia, however, require only that the concept recog-

nition function be sufficient. For program analysis, concept recognition functions can be

either necessary or sufficient or both.8

Many learning systems start with descriptions of the examples which are complete

and maximally specific. In many cases, the descriptions are represented as a conjunction

of predicates. These descriptions can be generalized in several ways:

1) Dropping condition rule - one (or more) of the conjuncts are dropped from the

description. l2

2) Class generalization - if a classification taxonomy exists for the domain under

analysis, then parts of the description representing more specific objects can be

replaced by one of the classes of which that object is a member.15

$ PROLOG programs are always written in this predicate form.

- 17 -

3)

4)

Folding5 - parts of a description can be replaced by a concept already

Disjunction of concepts - a disjunction is always true in at least as many cases as the

constituent concepts.

l6

For the analysis of abstract data types, the transform functions and values can be used to

generate a description. However, because the number of transform functions can be

infinite, the description may not be complete (at least not finite and complete)*. For this

reason, the dropping condition and folding approaches to generalization are not used,

since they traditionally require complete descriptions. Due to a lack of a concept taxon-

omy, this method is also ruled out. Both internal and external disjunctionlo are used to

generalize the assertion as described previously, but this is done only after an initial con-

cept has been formed.

The formation of this initial concept uses a method of generalization different from

the four methods mentioned above. The choice of one transform function in effect gen-

eralizes the concept to include all the input examples which are in the inverse mapping of

the transform value of the input example under consideration. An attempt is made to dis-

cover if this concept is too general by looking for a counterexample to the sufficient

characteristic function. The active searching for an example which fails to satisfy the

concept has been called expectation-based filtering. l7 If a counterexample is found then

it is used to guide the selection of a new transform function. This helps the algorithm

0 Folding is a term used in program transformations whereby the body of a program is replaced by
a call to the program. This is the opposite of macro expansion.
* An infinite number of transform functions can result is there are an infinite number of key events
- each generating its own transform function. An infinite number of key events can result from
data types which have a non-TO1 input argument which can take on an unbounded number of
values. For queues, the number of integers which can be entered into the queue (and thus used to
define key events) is potentially infinite.

either to find a suitabl transform fu

- 18-

ction or to fail more quickly tha might be ossible

using a uninformed search. If none of the transforms function singly are sufficient, then

the algorithm adds conditions to form multi-dimensional transform spaces. Thus the for-

mation of a concept is a combination of a selecting conditions rule and an adding condi-

tions rule. The Concept Learning System (CLS) used in ID3 also starts with a general-

ized hypothesis and specializes it by adding conditions. l8

Considering each value returned by a behavior function as a concept to be learned,

the analysis of data types is a multi-concept learning problem. The individual concepts

are learned separately and then merged together. Sometimes, as in learning the two con-

cepts for Isemptyq, the concepts are merged disjunctively (see program synthesized for

Zsemptyq later on in this paper). However, in the case that there are an infinite number of

concepts (as there are for Frontq), the generalization takes the form of a concept

schema?.

To close this section, it should be pointed out for this problem the training examples

are noise free and that the inductive theorem prover is the ultimate arbiter of the correct-

ness of any learned concepts.

Comparison to Program Synthesis by Examples. Although the orientation of this

research is analysis instead of synthesis, analysis is an important component in generat-

ing efficient implementations. The two assertions learned about the behavior function

Zsemptyq could be easily converted into a program. Also, the assertion learned about

Frontq can provide insight into its implementation. So it may be useful to compare this

t As programs, a concept schema is represented as a fixed code segment and a dynamically sized
data structure.

- 19-

work to that on program synthesis by example.

I -

.

There is an extensive body of literature in the synthesis of LISP programs by exam-

ple.19 However the general problem area is different. Most work in the literature deals

with pre-defined data structures (such as those given in LISP) and mes to synthesize

functions which manipulate those data structures. The generator and behavior functions

of the underlying data type are used as primitives in the generalization process. By con-

trast, the programming of abstract data types requires the synthesis of its generator and

behavior functions.

To explore this difference some more, let’s examine how the assertions learned by

our approach can be used to synthesize programs. In order to use the learned assertions

about Isemptyq as a program, the transform function, #A’, must be computable. Syn-

thesizing the implementation of #A’ is easy (in this case) by examining the input exam-

ples for the effect that each generator function has on the value returned by #A’. Let

N-Addq be a count of the number of occurrences of Addq in the canonical representation

of a queue, then

Newq: sets N-Addq to 0 (initialization)
Addq: increments N-Addq by one.
Deleteq: if N-Addq is not 0 decrements N-Addq by one

Recognizing that assertions 1 and 3 form a partition of the transform space of #A’, it

would be easy to generate the following program for Isempfyq:

IF N-Addq = 0 THEN True

ELSE False

The interesting result is that the code for implementing Zsemtpyq is distributed

- 20 -

among four functions. This supports the statement made earlier that the behavior of an

abstract data type is determined solely by the value returned by the behavior functions.

The only code required in the generator functions is that required to implement the

behavior functions. This distributing of code for the behaviors among the generators is

the major way in which the implementation for abstract data types differs from the

implementation for functions which manipulate, rather than define, data structures.

There are systems for synthesizing implementations for abstract data types reported

in the literature 20* 21 but these systems manipulate the specification directly. Examples

are not used in the synthesis process.

7. Conclusions

This paper presents an application of learning from examples to the analysis and

synthesis of abstract data types. The generalization process searches for a mapping from

the input space into a transformation space in which a characteristic function can be gen-

erated. This characteristic function defines a subset of the input space which can be

equal to, more specific than or more general than the subset of the input space which

belongs to the concept being learned. For abstract data types the concept to be learned is

defined in relationship to the equivalence class of input objects which exhibit the same

behavior.

An algorithm for searching through a pre-defined set of transform functions is given

and compared to related literature in machine learning. Results from an analysis of the

queue data type are presented and demonstrate the possible application of this method to

program synthesis. Some unique characteristics of synthesis for abstract data types are

discussed.

- 21 -

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Balzer, Robert, Cheatham, Thomas, and Green, Cordell, “Software Technology in
the 1990’s: Using a New Paradigm,” Computer, pp. 39-45, Dec. 1983.
Scherlis, William and Scott, Dana, “First Steps Towards Inferential Program-
ming,” Information Processing 83, vol. 9, no. ISBN 0-444-86729-5, py. 199-212,
Elsevier Science Publishers, NY, Sept. 1983.
Guttag, J. and Homing, J., “The Algebraic Specification of Abstract Data Types,”
Acta Inforrnatica, vol. 10, pp. 27-52, 1978.
Wild, Christian, Eckhardt, Dave, Pang, Ava, and Sundararajan, Saraswathi,
Analysis of Executable Specifications for Testing and Monitoring Abstract Data
Types, Department of Computer Science, Old Dominion University, Norfolk, VA,
March 1986.
Bouge, L., Choquet, N., Fribourg, L., and Gaudel, M.C., “Application of PROLOG
to Test Sets Generation From Algebraic Specifications,” Formal Methods and
Software Development, vol. 2, no. ISBN 3-540-15 199-0, pp. 261-275, Springer-
Verlag, Berlin, March 1985.
Goguen, Joseph, “Some Design Principles and Theory for OBJ-0, A Language to
Express and Execute Algebraic Specifications of Programs,” Mathematical Studies
of Information Processing, vol. 75, no. ISBN 3-540-09541-1, pp. 425-473, Spring-
Verlag, NY, 1978.
Wild, Christian, “Learning the Behavior of Software Systems from Executable
Specifications,” Proceedings of OAST Technical Symposium on Computer Science
and Data Systems, no. ODU-TR-CS-86-011, November, 1986.
Wild, Christian, ‘ ‘Automating Software Fault Tolerance,” Journal of Spacecraft
and Rockets, vol. 24, no. 1, pp. 86-89, JanuaryFebruary 1987.
Hoare, C. A .R., Communicating Sequential Processes, Pren tice Hall International,
Englewood Cliffs, NJ, 1985.
Michalski, Ryszard, ‘‘A Theory and Methodology of Inductive Learning,” in
Machine Learning: An Artificial Intelligence Approach, ed. Ryszard Michalski,
Jamie Carbonell and Tom Mitchell, vol. 1 , pp. 83-134, Morgan Kaufmann, Los
Altos, CA, 1983.
Kodratoff, Yves and Ganascia, Jean-Gabriel, “Improving the Generalization Step in
Learning,’’ in Machine Learning, ed. Ryszard Michalski, Jaime Carbonell and Tom
Mitchell, vol. 11, pp. 215-244, 1986.
Dietterich, Thomas and Michalski, Ryszard, “A Comparative Review of Selected
Methods for Learning from Examples,” in Machine Learning: An Artificial Intelli-
gence Approach, vol. 1, pp. 41-82, Morgan Kaufmann, Los Altos, CA, 1983.
Langley, Pat, Zytkow, Jan, Simon, Herbert, and Bradshaw, Gary, “The Search for
Regularity: Four Aspects of Scientific Discovery,” in Machine Learning: An
Artificial Intelligence Approach, ed. Ryszard Michalski, Jaime Carbonell and Tom
Mitchell, vol. 2, pp. 425-469, Morgan Kaufmann Publishers, Inc., Los Altos, CA,
1986.

- 22 -

14.

15.

16.

17.

18.

19.

20.

21.

Cohen, Brian and Sammut, Claude, “Program Synthesis Through Concept Learn-
ing,” in Automatic Program Construction Techniques, ed. Alan Biermann, Gerard
Guiho and Yves Kadratoff, pp. 463-482, Macmillan Publishing, New York, 1984.
Mitchell, Tom, Utgoff, Paul, and Banerji, Ranan, “Learning by Experimentation:
Acquiring and Refining Problem-Solving Heuristics,” in Machine Learning: An
Artificial Intelligence Approach, ed. Ryszard Michalski, Jaime Carbonell and Tom
Mitchell, vol. 1, pp. 163-190, Morgan Kaufmann, Los Altos, CA, 1983.
Sammut, Claude and Banerji, Ranan, “Learning Concepts by Asking Questions,”
in Machine Learning: An Artificial Intelligence Approach, ed. Ryszard Michalski,
Jaime Carbonell and Tom Mitchell, vol. 2, pp. 167-191, Morgan Kaufmann Publish-
ers, Inc., Los Altos, CA, 1986.
Lenat, D.B., Hayes-Roth, F., and Klahr, P., “Cognitive Economy in Artificial Intel-
ligence Systems,’’ IJCAI, vol. 6 , pp. 531-539, 1979.
Cohen, Paul and Fiegenbaum, Edward, ‘ ‘Data-driven Rule-space Operators,’’ in
The Handbook of Artificial Intelligence, vol. 3, pp. 401-410, William Kaufmann,
Inc., 1982.
Smith, Douglas, “The Synthesis of LISP Programs from Examples: A Survey,” in
Automatic Program Construction Techniques, ed. Alan Biermann, Gerard Guiho
and Yves Kadratoff, pp. 307-324, Macmillan Publishing, New York, 1984.
Bartels, U., Olthoff, W., and Raulefs, P., “APE: An expert system for automatic
programming from abstract specification of data types and algorithms,” IJCAI-81,

Moitra, Abha, “Direct Implementation of Algebraic Specification of Abstract Data
Types,” IEEE Trans. on Soft. Eng., vol. SE-8, no. 1, pp. 12-20, Jan. 1982.

pp. 1037-1043,1981.

Report Documentation Page
1. Report No.

NASA CR-178369
l(;A,Sl< IkaporL No. H / - W _ _ - - __ _ _ __ - . ~

2. Government Accession No.

1 _ _ - -- __ __.

7. Author(s1

Christian Wild

7. Key Words (Suggested by Author(s))

9. Performing Organization Name and Address

Institute for Computer Applications in Science

Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

2. Sponsoring Agency Name aqd Address

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

and Engineering

5. Supplementary Notes

Langley Technical Monitor: Submitted

18. Distribution Statement

3. Recipient’s Catalog No.

Unclassified

- _ .__-__-

5 Report Date--

September 1987

Unclassified 24 A02

__..__
6. Performing Organization Code

8. Performing Organization Report No.

87-59

10: Work Unit No.

505-90-2 1-01

11. Contract or Grant No.

NAS1-18107
13. Type of Report and Period Covered

Contractor Report
14. Sponsoring Agency Code

to IEEE Trans. on
Richard W. Barnwell Software Engrg.

Final Report

6. Abstract

The discovery of general patterns of behavior from a set of input/output
examples can be a useful technique in the automated analysis and synthesis of
software systems. These generalized descriptions of the behavior form a set of
assertions which can be used for validation, program synthesis, program testing
and run-time monitoring. Describing the behavior is characterized as a learning
process in which the set of inputs is mapped into an appropriate transform space
such that general patterns can be easily characterized. The learning algorithm
must choose a transform function and define a subset of the transform space
which is related to equivalence classes of behavior in the original domain. An
algorithm for analyzing the behavior of abstract data types is presented and
several examples are given. The use of the analysis for purposes of program
synthesis is also discussed.

machine learning, program testing 61 - Computer Programming and
66 - Systems Analysis

Software

I Unclassified - unlimited
9. Security Classif. (of this report) 120. Security Classif. (of this page) 121. NO. of pages 1 22. Price

